DNA vaccination efficiently induces antibodies to Nogo-A and does not exacerbate experimental autoimmune encephalomyelitis.
نویسندگان
چکیده
Antibodies against the neurite outgrowth inhibitor Nogo-A enhance axonal regeneration following spinal cord injury. However, antibodies directed against myelin components can also enhance CNS inflammation. The present study was designed to assess the efficacy of DNA vaccination for generating antibodies against Nogo-A and to study their pathogenic potential in a mouse model for multiple sclerosis. Mice were immunized by a single i.m. injection of a plasmid expression vector encoding either full length membrane-integral Nogo-A equipped with a signal peptide or two versions of its large N-terminal extramembrane region. The presence of serum antibodies to Nogo-A was measured 4 weeks after injection by ELISA, Western blotting and immunohistochemistry. DNA vaccination efficiently induced production of Nogo-A-specific antibodies that recognized recombinant, intracellular Nogo-A in cell culture but also stained native Nogo-A on the oligodendrocyte surface. Experimental autoimmune encephalomyelitis was induced in DNA-vaccinated mice by immunization with proteolipid peptide (a.a. 139-154). In contrast to vaccination with DNA encoding myelin oligodendrocyte glycoprotein that exacerbates this disease, Nogo-A DNA vaccination did not enhance clinical severity of disease. In summary, DNA vaccination is a simple and efficient method for generating an antibody response to Nogo-A. No pathogenicity was observed even during a full-blown inflammatory response of the central nervous system.
منابع مشابه
Non-coding plasmid DNA induces IFN-γ in vivo and suppresses autoimmune encephalomyelitis
Regulatory sequences used in plasmids for naked DNA vaccination can modulate cytokine production in vivo. We demonstrate here that injection of plasmid DNA can suppress the prototypic T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis, by inducing IFN-γ.
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملLimiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoim...
متن کاملMyelin regulates immune cell adhesion and motility.
The etiology of multiple sclerosis (MS) has not been fully elucidated, however evidence supports an autoimmune disease model notable for the infiltration of pro-inflammatory immune cells into sites of active demyelination and axonal injury. Previous findings demonstrate that neutralization of Nogo, a protein originally identified as a myelin-associated inhibitor (MAI) of axon regeneration, amel...
متن کاملThe Effects of Intradermal Vaccination with DNA Encoding for the T-cell Receptor on the Induction of Experimental Autoimmune Encephalomyelitis in B10.PL Mice
Intradermal gene administration was found to induce a more profound immune response than direct intramuscular gene injection. We performed intradermal vaccination of B10.PL mice with DNA encoding for the V 8.2 region of the T-cell receptors (TCR). Three weeks later, these mice were immunized with rat myelin basic protein (MBP). Daily mean clinical scores and mortality rate were lower in this gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of pharmacology
دوره 588 1 شماره
صفحات -
تاریخ انتشار 2008